If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-149=0
a = 1; b = 8; c = -149;
Δ = b2-4ac
Δ = 82-4·1·(-149)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{165}}{2*1}=\frac{-8-2\sqrt{165}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{165}}{2*1}=\frac{-8+2\sqrt{165}}{2} $
| 2a-1=3a-2 | | 8a+4=3a-3+7 | | -x+(x+1)+(x+2)+(x+3)=-46 | | 2a+15=3a+10 | | 2^b=32 | | -7-(r+3)=-4r+3(-4-4r) | | -2/7=2q/7 | | x=0.15x+0.1x+45 | | x=0.15x+0.1x+50 | | 7p+1=-4-6p | | 3n+5/2=6 | | 10-4n=n+7 | | 4-5r+2r=3-2 | | 3+2(q-1)=7 | | 4(-z+4)=2 | | -3b+6=-4 | | x=0.15x+0.1x+40 | | x=0.15x+.01x+40 | | 0=1-k+5 | | 7x^2-19x-20000=0 | | 7x^2-19x-20008=0 | | 4^x=3*(2^x)+5 | | 4^x=3*2^x+5 | | 8x-(2+7)=5x-8 | | 4y+4=-11 | | 4x+1/2x-5=-9 | | P(+)=-1/4t^2+7t+180 | | 480/x-480/x-8=0 | | 4(3x-1)=5x+1.5 | | 20x–27=x+581 | | 2-5x=-3x-50 | | -x+15=12-4x |